Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 291(1): 271-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26319649

RESUMO

Long gaps between active replication origins probably occur frequently during chromosome replication, but little is known about how cells cope with them. To address this issue, we deleted replication origins from S. cerevisiae chromosome III to create chromosomes with long interorigin gaps and identified mutations that destabilize them [originless fragment maintenance (Ofm) mutations]. ofm6-1 is an allele of HST3, a sirtuin that deacetylates histone H3K56Ac. Hst3p and Hst4p are closely related, but hst4Δ does not cause an Ofm phenotype. Expressing HST4 under the control of the HST3 promoter suppressed the Ofm phenotype of hst3Δ, indicating Hst4p, when expressed at the appropriate levels and/or at the correct time, can fully substitute for Hst3p in maintenance of ORIΔ chromosomes. H3K56Ac is the Hst3p substrate critical for chromosome maintenance. H3K56Ac-containing nucleosomes are preferentially assembled into chromatin behind replication forks. Deletion of the H3K56 acetylase and downstream chromatin assembly factors suppressed the Ofm phenotype of hst3, indicating that persistence of H3K56Ac-containing chromatin is deleterious for the maintenance of ORIΔ chromosomes, and experiments with synchronous cultures showed that it is replication of H3K56Ac-containing chromatin that causes chromosome loss. This work shows that while normal chromosomes can tolerate hyperacetylation of H3K56Ac, deacetylation of histone H3K56Ac by Hst3p is required for stable maintenance of a chromosome with a long interorigin gap. The Ofm phenotype is the first report of a chromosome instability phenotype of an hst3 single mutant.


Assuntos
Cromossomos Fúngicos/genética , Histona Desacetilases/genética , Histonas/genética , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Instabilidade Cromossômica/genética , Dano ao DNA/genética , Replicação do DNA/genética , Mutação/genética
2.
PLoS Genet ; 10(4): e1004261, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743168

RESUMO

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Assuntos
Cryptococcus neoformans/genética , Genoma Fúngico/genética , RNA Fúngico/genética , Transcriptoma/genética , Virulência/genética , Cromossomos Fúngicos/genética , DNA Fúngico/genética , Íntrons/genética
3.
PLoS Genet ; 6(12): e1001227, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21151954

RESUMO

In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1(AQ) allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps.


Assuntos
Instabilidade Cromossômica , Cromossomos Fúngicos/genética , Dano ao DNA , Origem de Replicação , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell Biol ; 28(16): 5071-81, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18573888

RESUMO

Saccharomyces cerevisiae chromosome III encodes 11 autonomously replicating sequence (ARS) elements that function as chromosomal replicators. The essential 11-bp ARS consensus sequence (ACS) that binds the origin recognition complex (ORC) has been experimentally defined for most of these replicators but not for ARS318 (HMR-I), which is one of the HMR silencers. In this study, we performed a comprehensive linker scan analysis of ARS318. Unexpectedly, this replicator depends on a 9/11-bp match to the ACS that positions the ORC binding site only 6 bp away from an Abf1p binding site. Although a largely inactive replicator on the chromosome, ARS318 becomes active if the nearby HMR-E silencer is deleted. We also performed a multiple sequence alignment of confirmed replicators on chromosomes III, VI, and VII. This analysis revealed a highly conserved WTW motif 17 to 19 bp from the ACS that is functionally important and is apparent in the 228 phylogenetically conserved ARS elements among the six sensu stricto Saccharomyces species.


Assuntos
Cromossomos Fúngicos/genética , Sequência Conservada , Replicação do DNA/genética , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Elementos Silenciadores Transcricionais/genética , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Plasmídeos/genética
6.
J Cell Biol ; 180(6): 1073-86, 2008 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-18347065

RESUMO

The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Delta cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Delta dun1Delta cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin-Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.


Assuntos
Divisão Celular/genética , Dano ao DNA/genética , Replicação do DNA/genética , Genes cdc/fisiologia , Fase S/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Instabilidade Genômica/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
7.
Genetics ; 177(3): 1445-58, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17720931

RESUMO

Eukaryotic chromosomes are duplicated during S phase and transmitted to progeny during mitosis with high fidelity. Chromosome duplication is controlled at the level of replication initiation, which occurs at cis-acting replicator sequences that are spaced at intervals of approximately 40 kb along the chromosomes of the budding yeast Saccharomyces cerevisiae. Surprisingly, we found that derivatives of yeast chromosome III that lack known replicators were replicated and segregated properly in at least 96% of cell divisions. To gain insight into the mechanisms that maintain these "originless" chromosome fragments, we screened for mutants defective in the maintenance of an "originless" chromosome fragment, but proficient in the maintenance of the same fragment that carries its normal complement of replicators (originless fragment maintenance mutants, or ofm). We show that three of these Ofm mutations appear to disrupt different processes involved in chromosome transmission. The OFM1-1 mutant seems to disrupt an alternative initiation mechanism, and the ofm6 mutant appears to be defective in replication fork progression. ofm14 is an allele of RAD9, which is required for the activation of the DNA damage checkpoint, suggesting that this checkpoint plays a key role in the maintenance of the "originless" fragment.


Assuntos
Cromossomos Fúngicos/genética , Saccharomyces cerevisiae/genética , Alelos , Proteínas de Ciclo Celular/genética , Instabilidade Cromossômica , Dano ao DNA , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Genes Fúngicos , Mutação , Fenótipo , Origem de Replicação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação
8.
J Biol Chem ; 282(24): 17363-74, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17420247

RESUMO

Human mitochondrial Lon is an ATP-powered proteolytic machine that specifically binds to single-stranded G-rich DNA and RNA in vitro. However, it is unknown whether Lon binds mitochondrial DNA (mtDNA) in living cells or functions in mtDNA integrity. Here, we demonstrate that Lon interacts with the mitochondrial genome in cultured cells using mtDNA immunoprecipitation (mIP). Lon associates with sites distributed primarily within one-half of the genome and preferentially with the control region for mtDNA replication and transcription. Bioinformatic analysis of mIP data revealed a G-rich consensus sequence. Consistent with these findings, in vitro experiments showed that the affinity of Lon for single-stranded DNA oligonucleotides correlates with conformity to this consensus. To examine the role of Lon in mtDNA maintenance, cells carrying an inducible short hairpin RNA for Lon depletion were used. In control and Lon-depleted cells, mtDNA copy number was essentially the same in the presence or absence of oxidative stress. However when oxidatively stressed, control cells exhibited an increased frequency of mtDNA lesions, whereas Lon-depleted cells showed little if any mtDNA damage. This suggests that oxidative mtDNA damage is permitted when Lon is present and prevented when Lon is substantially depleted. Upon oxidative stress, mIP showed reduced Lon binding to mtDNA; however binding to the control region was unaffected. It is unlikely that oxidative modification of Lon blocks its ability to bind DNA in vivo as results show that oxidized purified Lon retains sequence-specific DNA binding. Taken together, these results demonstrate that mtDNA binding is a physiological function of Lon and that cellular levels of Lon influence sensitivity to mtDNA damage. These findings suggest roles for Lon in linking protein and mtDNA quality control.


Assuntos
DNA Mitocondrial/metabolismo , Protease La/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Biologia Computacional , Sequência Consenso , DNA Mitocondrial/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oxidantes/metabolismo , Oxirredução , Protease La/genética , Interferência de RNA
9.
Mol Cell Biol ; 27(13): 4652-63, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17452442

RESUMO

Replication origins in Saccharomyces cerevisiae are spaced at intervals of approximately 40 kb. However, both measurements of replication fork rate and studies of hypomorphic alleles of genes encoding replication initiation proteins suggest the question of whether replication origins are more closely spaced than should be required. We approached this question by systematically deleting replicators from chromosome III. The first significant increase in loss rate detected for the 315-kb full-length chromosome occurred only after all five efficient chromosomal replicators in the left two-thirds of the chromosome (ARS305, ARS306, ARS307, ARS309, and ARS310) had been deleted. The removal of the inefficient replicator ARS308 from this originless region caused little or no additional increase in loss rate. Chromosome fragmentations that removed the normally inactive replicators on the left end of the chromosome or the replicators distal to ARS310 on the right arm showed that both groups of replicators contribute significantly to the maintenance of the originless chromosome. Surprisingly, a 142-kb derivative of chromosome III, lacking all sequences that function as autonomously replicating sequence elements in plasmids, replicated and segregated properly 97% of the time. Both the replication initiation protein ORC and telomeres or a linear topology were required for the maintenance of chromosome fragments lacking replicators.


Assuntos
Cromossomos Fúngicos/genética , Replicação do DNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Instabilidade Cromossômica/genética , DNA Circular/metabolismo , Eletroforese em Gel Bidimensional , Complexo de Reconhecimento de Origem/metabolismo , Deleção de Sequência , Telômero/metabolismo
10.
Mol Genet Genomics ; 277(3): 287-99, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17136349

RESUMO

Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.


Assuntos
DNA Fúngico/genética , Genes Fúngicos , Kluyveromyces/genética , Origem de Replicação , Sequência de Bases , Sítios de Ligação/genética , Cromossomos Fúngicos/genética , Sequência Conservada , Primers do DNA/genética , Replicação do DNA/genética , DNA Fúngico/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Plasmídeos/genética , Ligação Proteica
11.
Mol Microbiol ; 51(5): 1413-23, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14982634

RESUMO

The analysis of replication intermediates of a Kluyveromyces lactis chromosomal autonomous replicating sequence (ARS), KARS101, has shown that it is active as a chromosomal replicator. KARS101 contains a 50 bp sequence conserved in two other K. lactis ARS elements. The deletion of the conserved sequence in KARS101 completely abolished replicator activity, in both the plasmids and the chromosome. Gel shift assays indicated that this sequence binds proteins present in K. lactis nuclear extracts, and a 40 bp sequence, previously defined as the core essential for K. lactis ARS function, is required for efficient binding. Reminiscent of the origin replication complex (ORC), the binding appears to be ATP dependent. A similar pattern of protection of the core was seen with in vitro footprinting. KARS101 also functions as an ARS sequence in Saccharomyces cerevisiae. A comparative study using S. cerevisiae nuclear extracts revealed that the sequence required for binding is a dodecanucleotide related to the S. cerevisiae ARS consensus sequence and essential for S. cerevisiae ARS activity.


Assuntos
Cromossomos Fúngicos/metabolismo , Replicação do DNA , Kluyveromyces/genética , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Pegada de DNA , Kluyveromyces/metabolismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutação , Plasmídeos , Origem de Replicação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Mol Cell ; 10(1): 207-13, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12150920

RESUMO

To determine whether replicational mutagenesis in the yeast genome is influenced by the positions of active origins, a reporter gene was placed in two orientations at multiple locations within a 39,000 bp region of chromosome III possessing two strong origins. The frequency of mutations resulting from misincorporation of adenine opposite 8-hydroxyguanine in one strand and 6-hydroxylaminopurine opposite cytosine in the other strand differed by 3- to 10-fold, depending on the gene orientation and its distance from the origins. The observed patterns indicate that active origins establish a strand bias for mutations that is maintained over thousands of base pairs and results from lower nucleotide selectivity and/or less efficient proofreading or mismatch repair during leading strand DNA replication.


Assuntos
Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Mutagênese/genética , Mutação de Sentido Incorreto/genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Conformação de Ácido Nucleico
13.
Bioessays ; 24(4): 300-4, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11948615

RESUMO

Replication origins, which are responsible for initiating the replication of eukaryotic chromosomal DNAs, are spaced at intervals of 40 to 200 kb. Although the sets of proteins that assemble at replication origins during G(1) to form pre-replicative complexes are highly conserved, the structures of replication origins varies from organism to organism. The identification of replication origins has been a labor-intensive task, requiring the analysis of chromosomal DNA replication intermediates. As a result, only a few replication origins have been identified and studied. In a pair of recently published papers, Raghuraman and colleagues and Wyrick, Aparicio and colleagues provide complementary microarray-based approaches to the identification of replication origins. These genome-wide views of DNA replication in Saccharomyces cerevisiae provide new insights into the way that the genome is duplicated and hold promise for the analysis of other genomes.


Assuntos
Evolução Biológica , Replicação do DNA/genética , Genoma Fúngico , Leveduras/genética , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...